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Abstract

This paper describes Livingstone, an implemented
kernel for a model-based reactive self-con�guring au-
tonomous system. It presents a formal characteriza-
tion of Livingstone's representation formalism, and re-
ports on our experience with the implementation in
a variety of domains. Livingstone provides a reac-
tive system that performs signi�cant deduction in the
sense/response loop by drawing on our past experi-
ence at building fast propositional conict-based al-
gorithms for model-based diagnosis, and by framing
a model-based con�guration manager as a proposi-
tional feedback controller that generates focused, opti-
mal responses. Livingstone's representation formalism
achieves broad coverage of hybrid hardware/software
systems by coupling the transition system models un-
derlying concurrent reactive languages with the qual-
itative representations developed in model-based rea-
soning. Livingstone automates a wide variety of tasks
using a single model and a single core algorithm, thus
making signi�cant progress towards achieving a cen-
tral goal of model-based reasoning. Livingstone, to-
gether with the HSTS planning and scheduling engine
and the RAPS executive, has been selected as part of
the core autonomy architecture for NASA's �rst New
Millennium spacecraft.

Introduction and Desiderata

NASA has put forth the challenge of establishing a
\virtual presence" in space through a eet of intelli-
gent space probes that autonomously explore the nooks
and crannies of the solar system. This \presence" is
to be established at an Apollo-era pace, with software
for the �rst probe to be completed in 1997 and the
probe (Deep Space 1) to be launched in 1998. The
�nal pressure, low cost, is of an equal magnitude. To-
gether this poses an extraordinary challenge and op-
portunity for AI. To achieve robustness during years in
the harsh environs of space the spacecraft will need to
radically recon�gure itself in response to failures, and
then navigate around these failures during its remain-
ing days. To achieve low cost and fast deployment, one-
of-a-kind space probes will need to be plugged together
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quickly, using component-based models wherever pos-
sible to automatically generate ight software. Finally,
the space of failure scenarios and associated responses
will be far too large to use software that requires pre-
launch enumeration of all contingencies. Instead, the
spacecraft will have to reactively think through the
consequences of its recon�guration options.

We made substantial progress on each of these fronts
through a system called Livingstone, an implemented
kernel for a model-based reactive self-con�guring au-
tonomous system. This paper presents a formalization
of the reactive, model-based con�guration manager un-
derlying Livingstone. Several contributions are key.
First, the approach uni�es the dichotomy within AI
between deduction and reactivity (Agre & Chapman
1987; Brooks 1991). We achieve a reactive system that
performs signi�cant deduction in the sense/response
loop by drawing on our past experience at building
fast propositional conict-based algorithms for model-
based diagnosis, and by framing a model-based con�g-
uration manager as a propositional feedback controller
that generates focused, optimal responses. Second, our
modeling formalism represents a radical shift from �rst
order logic, traditionally used to characterize model-
based diagnostic systems. It achieves broad coverage
of hybrid hardware/software systems by coupling the
transition system models underlying concurrent reac-
tive languages (Manna & Pnueli 1992) with the qual-
itative representations developed in model-based rea-
soning. Reactivity is respected by restricting the model
to concurrent propositional transition systems that are
synchronous. Third, the long held vision of model-
based reasoning has been to use a single central model
to support a diversity of engineering tasks. For model-
based autonomous systems this means using a single
model to support a variety of execution tasks including
tracking planner goals, con�rming hardware modes,
recon�guring hardware, detecting anomalies, isolating
faults, diagnosis, fault recovery, and sa�ng. Living-
stone automates all these tasks using a single model
and a single core algorithm, thus making signi�cant
progress towards achieving the model-based vision.

Livingstone, integrated with the HSTS planning and
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Figure 1: Engine schematic. Valves in solid black are
closed, while the others are open.

scheduling system (Muscettola 1994) and the RAPS
executive (Firby 1995), was demonstrated to success-
fully navigate the simulated NewMaap spacecraft into
Saturn orbit during its one hour insertion window, de-
spite about half a dozen failures. Consequently, Liv-
ingstone, RAPS, and HSTS have been selected to y
Deep Space 1, forming the core autonomy architecture
of NASA's New Millennium program. In this archi-
tecture (Pell et al. 1996) HSTS translates high-level
goals into partially-ordered tokens on resource time-
lines. RAPS executes planner tokens by translating
them into low-level spacecraft commands while enforc-
ing temporal constraints between tokens. Livingstone
tracks spacecraft state and planner tokens, and recon-
�gures for failed tokens.
The rest of the paper is organized as follows. In

the next section we introduce the spacecraft domain
and the problem of con�guration management. We
then introduce transition systems, the key formalism
for modeling hybrid concurrent systems, and a formal-
ization of con�guration management. Next, we dis-
cuss model-based con�guration management and its
key components: mode identi�cation and mode recon-
�guration. We then introduce algorithms for statisti-
cally optimal model-based con�guration management
using conict-directed best-�rst search, followed by an
empirical evaluation of Livingstone.

Example: Autonomous Space

Exploration

Figure 1 shows an idealized schematic of the main en-
gine subsystem of Cassini, the most complex spacecraft
built to date. It consists of a helium tank, a fuel tank,
an oxidizer tank, a pair of main engines, regulators,
latch valves, pyro valves, and pipes. The helium tank

pressurizes the two propellant tanks, with the regu-
lators acting to reduce the high helium pressure to a
lower working pressure. When propellant paths to a
main engine are open, the pressurized tanks forces fuel
and oxidizer into the main engine, where they combine
and spontaneously ignite, producing thrust. The pyro
valves can be �red exactly once, i.e., they can change
state exactly once, either from open to closed or vice
versa. Their function is to isolate parts of the main en-
gine subsystem until needed, or to isolate failed parts.
The latch valves are controlled using valve drivers (not
shown), and the accelerometer (Acc) senses the thrust
generated by the main engines.
Starting from the con�guration shown in the �gure,

the high-level goal of producing thrust can be achieved
using a variety of di�erent con�gurations: thrust can
be provided by either main engine, and there are a
number of ways of opening propellant paths to either
main engine. For example, thrust can be provided by
opening the latch valves leading to the engine on the
left, or by �ring a pair of pyros and opening a set of
latch valves leading to the engine on the right. Other
con�gurations correspond to various combinations of
pyro �rings. The di�erent con�gurations have di�erent
characteristics since pyro �rings are irreversible actions
and since �ring pyro valves requires signi�cantly more
power than opening or closing latch valves.
Suppose that the main engine subsystem has been

con�gured to provide thrust from the left main engine
by opening the latch valves leading to it. Suppose that
this engine fails, e.g., by overheating, so that it fails to
provide the desired thrust. To ensure that the desired
thrust is provided even in this situation, the spacecraft
must be transitioned to a new con�guration in which
thrust is now provided by the main engine on the right.
Ideally, this is achieved by �ring the two pyro valves
leading to the right side, and opening the remaining
latch valves (rather than �ring additional pyro valves).
A con�guration manager constantly attempts to

move the spacecraft into lowest cost con�gurations that
achieve a set of high-level dynamically changing goals.
When the spacecraft strays from the chosen con�gu-
ration due to failures, the con�guration manager ana-
lyzes sensor data to identify the current con�guration
of the spacecraft, and then moves the spacecraft to a
new con�guration which, once again, achieves the de-
sired con�guration goals. In this sense a con�guration
manager is a discrete control system that ensures that
the spacecraft's con�guration always achieves the set
point de�ned by the con�guration goals.

Models of Concurrent Processes

Reasoning about a system's con�gurations and au-
tonomous recon�guration requires the concepts of op-
erating and failure modes, repairable failures, and con-
�guration changes. These concepts can be expressed
in a state diagram: repairable failures are transitions
from a failure state to a nominal state; con�guration



changes are between nominal states; and failures are
transitions from a nominal to a failure state.
Selecting a restricted, but adequately expressive, for-

malism for describing the con�gurations of a hybrid
hardware/software system is essential to achieving the
competing goals of reactivity and expressivity. First-
order formulations, though expressive, are overly gen-
eral and do not lend themselves to e�cient reasoning.
Propositional formulations lend themselves to e�cient
reasoning, but are inadequate for representing concepts
such as state change. Hence, we use a concurrent tran-
sition system formulation and a temporal logic speci�-
cation (Manna & Pnueli 1992) as a starting point for
modeling hardware and software. Components operate
concurrently, communicating over \wires," and hence
can be modeled as concurrent communicating transi-
tion systems. Likewise, for software routines, a broad
class of reactive languages can be represented natu-
rally as concurrent transition systems communicating
through shared variables.
Where our model di�ers from that of Manna &

Pnueli, is that reactive software procedurally modi-
�es its state through explicit variable assignments. On
the other hand, a hardware component's behavior in
a state is governed by a set of discrete and continu-
ous declarative constraints. These constraints can be
computationally expensive to reason about in all their
detail. However, experience applying qualitative mod-
eling to diagnostic tasks for digital systems, copiers,
and spacecraft propulsion, suggests that simple qual-
itative representations over small �nite domains are
quite adequate for modeling continuous and discrete
systems. The added advantage of using qualitative
models is that they are extremely robust to changes
in the details of the underlying model. Hence behav-
iors within states are represented by constraints over
�nite domains, and are encoded as propositional for-
mulae which can be reasoned with e�ciently.
Other authors such as (Kuipers & Astrom 1994;

Nerode & Kohn 1993; Poole 1995; Zhang & Mack-
worth 1995) have been developing formal methods for
representing and reasoning about reactive autonomous
systems. The major di�erence between their work and
ours is our focus on fast reactive inference using propo-
sitional encodings over �nite domains.

Transition systems

We model a concurrent process as a transition system.
Intuitively, a transition system consists of a set of state
variables de�ning the system's state space and a set of
transitions between the states in the state space.

De�nition 1 A transition system S is a tuple
h�;�; T i, where

� � is a �nite set of state variables. Each state variable
ranges over a �nite domain.

� � is the feasible subset of the state space. Each
state in the state space assigns to each variable in �
a value from its domain.

� T is a �nite set of transitions between states. Each
transition � 2 T is a function � : �! 2� represent-
ing a state transforming action, where � (s) denotes
the set of possible states obtained by applying tran-
sition � in state s.

A trajectory for S is a sequence of feasible states
� : s0; s1; : : : such that for all i � 0, si+1 2 � (si) for
some � 2 T . In this paper we assume that one of
the transitions of S, called �n, is designated the nom-
inal transition, with all other transitions being failure
transitions. Hence in any state a component may non-
deterministically choose to perform either its nominal
transition, corresponding to correct functioning, or a
failure transition, corresponding to a component fail-
ure. Furthermore in response to a successful repair
action, the nominal transition will move the system
from a failure state to a nominal state.
A transition system S = h�;�; T i is speci�ed using

a propositional temporal logic. Such speci�cations are
built using state formulae and the  operator. A state
formula is an ordinary propositional formula in which
all propositions are of the form yk = ek, where yk is a
state variable and ek is an element of yk's domain. 
is the next operator of temporal logic denoting truth
in the next state in a trajectory.
A state s de�nes a truth assignment in the natural

way: proposition yk = ek is true i� the value of yk is
ek in s. A state s satis�es a state formula � precisely
when the truth assignment corresponding to s satis�es
�. The set of states characterized by a state formula �
is the set of all states that satisfy �. Hence, we specify
the set of feasible states of S by a state formula �S .
A transition � is speci�ed by a formula �� , which is

a conjunction of formulae ��i of the form �i ) 	i,
where �i and 	i are state formulae. A feasible state sk
can follow a feasible state sj in a trajectory of S using
transition � i� for all formulae ��i , if sj satis�es the
antecedent of ��i , then sk satis�es the consequent of
��i . A transition �i that models a formula ��i is called a
subtransition. Hence taking a transition � corresponds
to taking all its subtransitions �i.
Note that this speci�cation only adds the  opera-

tor to standard propositional logic. This severely con-
strained use of temporal logic is an essential property
that allows us to perform deductions reactively.

Example 1 The transition system corresponding
to a valve driver consists of 3 state variables
fmode; cmdin; cmdoutg, where mode represents the
driver's mode (on, o�, resettable or failed), cmdin
represents commands to the driver and its associated
valve (on, o�, reset, open, close, none), and cmdout
represents the commands output to its valve (open,
close, or none). The feasible states of the driver are
speci�ed by the formula

mode = on ) (cmdin = open) cmdout = open)
^ (cmdin = close) cmdout = close)
^ ((cmdin 6= open ^ cmdin 6= close)
) cmdout = none)

mode = o� ) cmdout = none



together with formulae like (mode 6= on) _ (mode 6=
o�), : : : that assert that variables have unique values.
The driver's nominal transition is speci�ed by the fol-
lowing set of formulae:

((mode = on) _ (mode= o�)) ^ (cmdin = o�))
(mode = o�)

((mode = on) _ (mode= o�)) ^ (cmdin = on))
(mode = on)

(mode 6= failed) ^ (cmdin = reset))(mode = on)
(mode = resettable) ^ (cmdin 6= reset))

(mode = resettable)
(mode = failed))(mode = failed)

The driver also has two failure transitions
speci�ed by the formulae (mode = failed) and
(mode = resettable), respectively.

Con�guration management

We view an autonomous system as a combination of
a high-level planner and a reactive con�guration man-
ager that controls a plant (Figure 2). The planner
generates a sequence of hardware con�guration goals.
The con�guration manager evolves the plant transition
system along the desired trajectory. The combination
of a transition system and a con�guration manager is
called a con�guration system. More precisely,

De�nition 2 A con�guration system is a tuple
hS ;�; �i, where S is a transition system, � is a
feasible state of S representing its initial state, and
� : g0; g1; : : : is a sequence of state formulae called
goal con�gurations. A con�guration system generates
a con�guration trajectory � : s0; s1 : : : for S such that
s0 is � and either si+1 satis�es gi or si+1 2 � (si) for
some failure transition � .

Con�guration management is achieved by sensing
and controlling the state of a transition system. The
state of a transition system is (partially) observable
through a set of variables O � �. The next state of
a transition system can be controlled through an ex-
ogenous set of variables � � �. We assume that � are
exogenous so that the transitions of the system do not
determine the values of variables in �. We also assume
that the values of O in a given state are independent of
the values of � at that state, though they may depend
on the values of � at the previous state.

De�nition 3 A con�guration manager C for a transi-
tion system S is an online controller that takes as input
an initial state, a sequence of goal con�gurations, and
a sequence of values for sensed variables O, and in-
crementally generates a sequence of values for control
variables � such that the combination of C and S is a
con�guration system.

A model-based con�guration manager is a con�gura-
tion manager that uses a speci�cation of the transition
system to compute the desired sequence of control val-
ues. We discuss this in detail shortly.

Plant transition system

We model a plant as a transition system composed
of a set of concurrent component transition systems
that communicate through shared variables. The com-
ponent transition systems of a plant operate syn-
chronously, that is, at each plant transition every com-
ponent performs a state transition. The motivation for
imposing synchrony is given in the next section. We
require the plant's speci�cation to be composed out of
its components' speci�cation as follows:

De�nition 4 A plant transition system S = h�;�; T i
composed of a set CD of component transition systems
is a transition system such that;

� The set of state variables of each transition system
in CD is a subset of �. The plant transition system
may introduce additional variables not in any of its
component transition systems.

� Each state in �, when restricted to the appropriate
subset of variables, is feasible for each transition sys-
tem in CD, i.e.., for each C 2 CD, �S j= �C , though
�S can be stronger than the conjunction of the �C .

� Each transition � 2 T performs one transition �C
for each transition system C 2 CD. This means that

�� ,
^

C2CD

��C

The concept of synchronous, concurrent actions is
captured by requiring that each component performs
a transition for each state change. Nondeterminism
lies in the fact that each component can traverse either
its nominal transition or any of its failure transitions.
The nominal transition of a plant performs the nomi-
nal transition for each of its components. Multiple si-
multaneous failures correspond to traversing multiple
component failure transitions.
Returning to the example, each hardware compo-

nent in Figure 1 is modeled by a component transition
system. Component communication, denoted by wires
in the �gure, is modeled by shared variables between
the corresponding component transition systems.

Model-based con�guration management

We now introduce con�guration managers that make
extensive use of a model to infer a plant's current state
and to select optimal control actions to meet con�gu-
ration goals. This is essential in situations where mis-
takes may lead to disaster, ruling out simple trial-and-
error approaches. A model-based con�guration man-
ager uses a plant transition modelM to determine the
desired control sequence in two stages|mode identi-
�cation (MI) and mode recon�guration (MR). MI in-
crementally generates the set of all plant trajectories
consistent with the plant transition model and the se-
quence of plant control and sensed values. MR uses
a plant transition model and the partial trajectories
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Figure 2: Model-based con�guration management

generated by MI up to the current state to determine
a set of control values such that all predicted trajecto-
ries achieve the con�guration goal in the next state.
Both MI and MR are reactive. MI infers the cur-

rent state from knowledge of the previous state and
observations within the current state. MR only consid-
ers actions that achieve the con�guration goal within
the next state. Given these commitments, the deci-
sion to model component transitions as synchronous
is key. An alternative is to model multiple transitions
through interleaving. This, however, places an arbi-
trary distance between the current state and the state
in which the goal is achieved, defeating a desire to limit
inference to a small number of states. Hence we use an
abstraction in which component transitions occur syn-
chronously, even though the underlying hardware may
interleave the transitions. The abstraction is correct if
di�erent interleavings produce the same �nal result.
We now formally characterize MI and MR. Recall

that taking a transition �i corresponds to taking all
subtransitions �ij. A transition �i can be de�ned to
apply over a set of states S in the natural way:

�i(S) =
[
s2S

�i(s)

Similarly we de�ne �ij(S) for each subtransition �ij of
�i. We can show that

�i(S) �
\
j

�ij(S) (1)

In the following, Si is the set of possible states at time
i before any control values are asserted by MR, �i is the
control values asserted at time i, Oi is the observations
at time i, and S�i and SOi

is the set of states in which

control and sensed variables have values speci�ed in
�i and Oi, respectively. Hence, Si \ S�i is the set of
possible states at time i.
We characterize both MI and MR in two ways|�rst

model theoretically and then using state formulas.

Mode Identi�cation

MI incrementally generate the sequence S0; S1; : : : us-
ing a model of the transitions and knowledge of the
control actions �i as follows:

S0 = f�g (2)

Si+1 =

 [
j

�j(Si \ S�i)

!
\� \ SOi+1

(3)

�

[
j

 \
k

�jk(Si \ S�i)

!
\� \ SOi+1

(4)

where the �nal inclusion follows from Equation 1.
Equation 4 is useful because it is a characterization
of Si+1 in terms of the subtransitions �jk. This allows
us to develop the following characterization of Si+1 in
terms of state formulae:

�Si+1 �
_
�j

0
@ ^
�Si^�S�i j=�jk

	jk

1
A ^ �� ^ �

Oi+1
(5)

This is a sound but potentially incomplete character-
ization of Si+1, i.e., every state in Si+1 satis�es �Si+1
but not all states that satisfy �Si+1 are necessarily in
Si+1. However, generating �Si+1 requires only that the
entailment of the antecedent of each subtransition be
checked. On the other hand, generating a complete
characterization based on Equation 3 would require
enumerating all the states in Si, which can be com-
putationally expensive if Si contains many states.

Mode Recon�guration

MR incrementally generates the next set of control val-
ues �i using a model of the nominal transition �n, the
desired goal con�guration gi, and the current set of
possible states Si. The model-theoretic characteriza-
tion ofMi, the set of possible control actions that MR
can take at time i, is as follows:

Mi = f�j j�n(Si \ S�j ) \� � gig (6)

� f�j j
\
k

�nk(Si \ S�j ) \� � gig (7)

where, once again, the latter inclusion follows from
Equation 1. As with MI, this weaker characterization
of Mi is useful because it is in terms of the subtran-
sitions �nk. This allows us to develop the following
characterization of Mi in terms of state formulae:

Mi � f�jj �Si ^ ��j is consistent and^
�Si

^��j j=�nk

	nk ^ �� j= �gig (8)

The �rst part says that the control actions must be
consistent with the current state, since without this
condition the goals can be simply achieved by making
the world inconsistent. Equation 8 is a sound but po-
tentially incomplete characterization of the set of con-
trol actions inMi, i.e., every control action that satis-
�es the condition on the right hand side is in Mi, but
not necessarily vice versa. However, checking whether
a given �j is an adequate control action only requires
that the entailment of the antecedent of each subtran-
sition be checked. On the other hand, generating a
complete characterization based on Equation 6 would



require enumerating all the states in Si, which can be
computationally expensive if Si contains many states.
IfMi is empty, no actions achieve the required goal.

The planner then initiates replanning to dynamically
change the sequence of con�guration goals.

Statistically optimal con�guration

management

The previous section characterized the set of all feasible
trajectories and control actions. However, in practice,
not all such trajectories and control actions need to
be generated. Rather, just the likely trajectories and
an optimal control action need to be generated. We
e�ciently generate these by recasting MI and MR as
combinatorial optimization problems.
A combinatorial optimization problem is a tuple

(X;C; f), where X is a �nite set of variables with �nite
domains, C is set of constraints over X, and f is an ob-
jective function. A feasible solution is an assignment to
each variable in X a value from its domain such that
all constraints in C are satis�ed. The problem is to
�nd one or more of the leading feasible solutions, i.e.,
to generate a pre�x of the sequence of feasible solutions
ordered in decreasing order of f .

Mode Identi�cation

Equation 3 characterizes the trajectory generation
problem as identifying the set of all transitions from
the previous state that yield current states consistent
with the current observations. Recall that a transi-
tion system has one nominal transition and a set of
failure transitions. In any state, the transition system
non-deterministically selects exactly one of these tran-
sitions to evolve to the next state. We quantify this
non-deterministic choice by associating a probability
with each transition: p(� ) is the probability that the
plant selects transition � .1

With this viewpoint, we recast MI's task to be one
of identifying the likely trajectories of the plant. In
keeping with the reactive nature of con�guration man-
agement, MI incrementally tracks likely trajectories by
extending the current set of trajectories by the likely
transitions. The only change required in Equation 5 is
that, rather than the disjunct ranging over all transi-
tions �j , it ranges over the subset of likely transitions.
The likelihood of a transition is its posterior proba-

bility p(� jOi). This posterior is estimated in the stan-
dard way using Bayes Rule:

p(� jOi) =
p(Oij�)p(�)

p(Oi)
/ p(Oij�)p(�)

If � (Si�1) and Oi are disjoint sets then clearly
p(Oij� ) = 0. Similarly, if � (Si�1) � Oi then Oi is en-
tailed and p(Oij� ) = 1, and hence the posterior prob-
ability of � is proportional to the prior. If neither of

1We make the simplifying assumption that the proba-
bility of a transition is independent of the current state.

the above two situations arises then p(Oij� ) � 1. Es-
timating this probability is di�cult and requires more
research, but see (de Kleer & Williams 1987).
Finally, to view MI as a combinatorial optimization

problem, recall that each plant transition consists of a
single transition for each of its components. We intro-
duce a variable into X for each component in the plant
whose values are the possible component transitions.
Each plant transition corresponds to an assignment of
values to variables in X. C is the constraint that the
states resulting from taking a plant transition is consis-
tent with the observed values. The objective function
f is the probability of a plant transition. The result-
ing combinatorial optimization problem hence identi-
�es the leading transitions at each state, allowing MI
to track the set of likely trajectories.

Mode recon�guration

Equation 6 characterizes the recon�guration problem
as one of identifying a control action that ensures that
the result of taking the nominal transition yields states
in which the con�guration goal is satis�ed. Recast-
ing MR as a combinatorial optimization problem is
straightforward. The variables X are just the control
variables � with identical domains. C is the constraint
in Equation 5 that �j must satisfy to be inMi. Finally,
as noted earlier, di�erent control actions can have dif-
ferent costs that reect di�ering resource requirements.
We take f to be negative of the cost of a control ac-
tion. The resulting combinatorial optimization prob-
lem hence identi�es the lowest cost control action that
achieves the goal con�guration in the next state.

Conict-directed best �rst search

We solve the above combinatorial optimization prob-
lems using a conict directed best �rst search, similar in
spirit to (de Kleer & Williams 1989; Dressler & Struss
1994). A conict is a partial solution such that any
solution containing the conict is guaranteed to be in-
feasible. Hence, a single conict can rule out the feasi-
bility of a large number of solutions, thereby focusing
the search. Conicts are generated while checking to
see if a solution Xi satis�es the constraints C.
Our conict-directed best-�rst search algorithm,

CBFS , is shown in in Figure 3. It has two major com-
ponents: (a) an agenda that holds unprocessed solu-
tions in decreasing order of f ; and (b) a procedure to
generate the immediate successors of a solution. The
main loop removes the �rst solution from the agenda,
checks its feasibility, and adds in the solution's imme-
diate successors to the agenda. When a solution Xi is
infeasible, we assume that the process of checking the
constraints C returns a part of Xi as a conict Ni. We
focus the search by generating only those immediate
successors of Xi that are not subsumed by Ni, i.e., do
not agree with Ni on all variables.
Intuitively, solution Xj is an immediate successor of

solutionXi only if f(Xi) � f(Xj ) andXi andXj di�er



function CBFS(X, C, f)
Agenda = ffbest-solution(X)gg; Result = ;;
while Agenda is not empty do

Soln = pop(Agenda);
if Soln satis�es C then

Add Soln to Result;
if enough solutions have been found then

return Result;
else Succs = immediate successors Soln;

else

Conf = a conict that subsumes Soln;
Succs = immediate successors of Soln not
subsumed by Conf;

endif

Insert each solution in Succs into Agenda
in decreasing f order;

endwhile

return Result;
end CBFS

Figure 3: Conict directed best �rst search algorithm
for combinatorial optimization

only in the value assigned to a single variable (ties are
broken consistently to prevent loops in the successor
graph). One can show this de�nition of the immediate
successors of a solution su�ces to prove the correctness
of CBFS , i.e., to show that all feasible solutions are
generated in decreasing order of f .
Our implemented algorithm further re�nes the no-

tion of an immediate successor. The major bene�t of
this re�nement is that each time a solution is removed
from the agenda, at most two new solutions are added
on, so that the size of the agenda is bounded by the
total number of solutions that have been checked for
feasibility, thus preserving reactivity (details are be-
yond the scope of this paper). For MI, we use full
propositional satis�ability to check C (transition con-
sistency). Interestingly, reactivity is preserved since
the causal nature of a plant's state constraints means
that full satis�ability requires little search. For MR, we
preserve reactivity by using unit propagation to check
C (entailment of goals), reecting the fact that entail-
ment is usually harder than satis�ability. Finally, note
that CBFS does not require minimal conicts. Empir-
ically, the �rst conict found by the constraint checker
provides enough focusing, so that the extra e�ort to
�nd minimal conicts is unnecessary.

Implementation and experiments

We have implemented Livingstone based on the ideas
described in this paper. Livingstone was part of a rapid
prototyping demonstration of an autonomous architec-
ture for spacecraft control, together with the HSTS
planning/scheduling engine and the RAPS executive
(Pell et al. 1996). In this architecture, RAPS fur-
ther decomposes and orders HSTS output before hand-
ing goals to Livingstone. To evaluate the architec-

Number of components 80
Average modes/component 3.5
Number of propositions 3424
Number of clauses 11101

Table 1: NewMaap spacecraft model properties

Failure MI MR
Scenario Chck Accpt Time Chck Time

EGA preaim 7 2 2.2 4 1.7
BPLVD 5 2 2.7 8 2.9
IRU 4 2 1.5 4 1.6
EGA burn 7 2 2.2 11 3.6
ACC 4 2 2.5 5 1.9
ME hot 6 2 2.4 13 3.8
Acc low 16 3 5.5 20 6.1

Table 2: Results from the seven Newmaap failure re-
covery scenarios

ture, spacecraft engineers at JPL de�ned the Newmaap
spacecraft and scenario. The Newmaap spacecraft is
a scaled down version of the Cassini spacecraft that
retains the most challenging aspects of spacecraft con-
trol. The Newmaap scenario was based on the most
complex mission phase of the Cassini spacecraft|
successful insertion into Saturn's orbit even in the
event of any single point of failure. Table 1 provides
summary informationabout Livingstone's model of the
Newmaap spacecraft, demonstrating its complexity.

The Newmaap scenario included seven failure sce-
narios. From Livingstone's viewpoint, each scenario
required identifying the failure transitions using MI
and deciding on a set of control actions to recover from
the failure using MR. Table 2 shows the results of run-
ning Livingstone on these scenarios. The �rst column
names each of the scenarios; a discussion of the details
of these scenarios is beyond the scope of this paper.
The second and �fth columns show the number of so-
lutions checked by algorithm CBFS when applied to
MI and MR, respectively. On can see that even though
the spacecraft model is large, the use of conicts dra-
matically focuses the search. The third column shows
the number of leading trajectory extensions identi�ed
by MI. The limited sensing available on the Newmaap
spacecraft often makes it impossible to identify unique
trajectories. This is generally true on spacecraft, since
adding sensors increases spacecraft weight. The fourth
and sixth columns show the time in seconds on a Sparc
5 spent by MI and MR on each scenario, once again
demonstrating the e�ciency of our approach.

Livingstone's MI component was also tested on ten
combinational circuits from a standard test suite (Br-
glez & Fujiwara 1985). Each component in these cir-
cuits was assumed to be in one of four modes: ok,
stuck-at-1, stuck-at-0, unknown. The probability of
transitioning to the stuck-at modes was set at 0:099
and to the unknown mode was set at 0:002. We ran 20



# of # of
Devices components clauses Checked Time

c17 6 18 18 0.1
c432 160 514 58 4.7
c499 202 714 43 4.5
c880 383 1112 36 4.0
c1355 546 1610 52 12.3
c1908 880 2378 64 22.8
c2670 1193 3269 93 28.8
c3540 1669 4608 140 113.3
c5315 2307 6693 84 61.2
c7552 3512 9656 71 61.5

Table 3: Testing MI on a standard suite of circuits

experiments on each circuit using a random fault and a
random input vector sensitive to this fault. MI stopped
generating trajectories after either 10 leading trajecto-
ries had been generated, or when the next trajectory
was 100 times more unlikely than the most likely tra-
jectory. Table 3 shows the results of our experiments.
The columns are self-explanatory, except that the time
is the number of seconds on a Sparc 2. Note once again
the power of conict-directed search to dramatically fo-
cus search. Interestingly, these results are comparable
to the results from the very best ATMS-based imple-
mentations, even though Livingstone uses no ATMS.
Furthermore, initial experiments with a partial LTMS
have demonstrated an order of magnitude speed-up.
Livingstone is also being applied to the autonomous

real-time control of a scienti�c instrument called a
Bioreactor. This project is still underway, and �nal
results are forthcoming. More excitingly, the success
of the Newmaap demonstration has launched Living-
stone to new heights: Livingstone, together with HSTS
and RAPS, is going to be part of the ight software of
the �rst New Millennium mission, called Deep Space
One, to be launched in 1998. We expect �nal delivery
of Livingstone to this project in 1997.

Conclusions

In this paper we introduced Livingstone, a reactive,
model-based self-con�guring system, which provides a
kernel for model-based autonomy. It represents an
important step toward our goal of developing a fully
model-based autonomous system (Williams 1996).
Three technical features of Livingstone are par-

ticularly worth highlighting. First, our modeling
formalism achieves broad coverage of hybrid hard-
ware/software systems by coupling the transition sys-
tem models underlying concurrent reactive languages
(Manna & Pnueli 1992) with the qualitative represen-
tations developed in model-based reasoning. Second,
we achieve a reactive system that performs signi�cant
deduction in the sense/response loop by using proposi-
tional transition systems, qualitative models, and syn-
chronous components transitions. The interesting and
important result of Newmaap, Deep Space One, and

the Bioreactor is that Livingstone's models and re-
stricted inference are still expressive enough to solve
important problems in a diverse set of domains. Third,
Livingstone casts mode identi�cation and mode re-
con�guration as combinatorial optimization problems,
and uses a core conict-directed best-�rst search to
solve them. The ubiquity of combinatorial optimiza-
tion problems and the power of conict-directed search
are central themes in Livingstone.
Livingstone, the HSTS planning/scheduling system,

and the RAPS executive, have been selected to form
the core autonomy architecture of Deep Space One, the
�rst ight of NASA's New Millennium program.
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